cover blog2

ELENCO POST:

domenica 30 giugno 2019

NETTUNO l'ultimo pianeta del sistema solare. by Andreotti Roberto - INSA.

______________________________________________________
______________________________________________________
Aggiornato il 25/12/2019

NETTUNO


                                                                                                                              
Neptune Full.jpg
  
Nettuno è l'ottavo e più lontano pianeta del Sistema solare partendo dal Sole. Si tratta del quarto pianeta più grande, considerando il suo diametro, e il terzo se si considera la sua massa.
Il nome del pianeta è dedicato al dio romano del mare; il suo simbolo è (♆), una versione stilizzata del tridente di Nettuno.

Dati fisici:
Nettuno , anche se leggermente più piccolo di Urano, ma è più massiccio (equivalente a 17,282 masse terrestri) e quindi più denso, pari a 1,638 kg/dm3, con una velocità di fuga di 23,5 km/s.
Esso irradia più calore interno rispetto a Urano, ma non tanto quanto Giove o Saturno.

Dati fisici
Diametro equatore49528 km
Diametro polare48681 km
Schiacciamento0,0171
Superficie7,619×1015 m²
Volume6,254×1022 m³
Massa1,0243×1026 kg
Densità media1638 kg/m³
Accelerazione di gravità in superficie11,15 m/s²
(1,14 g)
Velocità di fuga23,5 km/s
Periodo di rotazione16,11 ore
(16 h 6 min 36 s)
Velocità di rotazione
(all'equatore)
2680 m/s
Inclinazione assiale28,32°
Temperatura
superficiale
50 K (−223 °C) (min)
53 K (−220 °C) (media)
Albedo0,41

Parametri orbitali:
Orbita con un semiasse-maggiore di 30,069 UA , e compie una rivoluzione intorno al sole in 164,88 anni, a questa distanza riceve dal sole un energia pari a 1,5 W/m2.
Ha un'eccentricità orbitale di 0,00858587 , ed un inclinazione rispetto all'Eclittica di 1,76917°.

Parametri orbitali
(all'epoca J2000)
Semiasse maggiore4498252900 km
30,06896348 UA
Perielio4459631496 km
29,81079527 UA
Afelio4536874325 km
30,32713169 UA
Circonferenza orbitale28263000000 km
188,925 UA
Periodo orbitale60.223,3528 giorni
(164,88 anni)
Periodo sinodico367,49 giorni
Velocità orbitale5,385 km/s (min)
5,432 km/s (media)
5,479 km/s (max)
Inclinazione orbitale1,76917°
Inclinazione rispetto
all'equatore del Sole
6,43°
Eccentricità0,00858587
Longitudine del
nodo ascendente
131,72169°
Argomento del perielio273,24966°

Struttura:
Nettuno ha una composizione molto simile a quella di Urano ed entrambi hanno composizioni differenti da quelle dei più grandi pianeti gassosi Giove e Saturno. Per questo talvolta vengono classificati come i "giganti ghiacciati".
Internamente Nettuno è composto da un'atmosfera che forma circa il 5-10% della massa del pianeta, estendendosi dal 10 al 20% del suo raggio, dove raggiunge pressioni di circa 10 GPa. Nelle regioni più profonde sono state trovate concentrazioni crescenti di metano, ammoniaca e acqua.

La struttura interna di Nettuno:
(schema a lato)
 1. Atmosfera superiore, sommità delle nubi.
2. Atmosfera inferiore, costituita da idrogeno, elio e gas metano.
3. Mantello d'acqua, ammoniaca e metano ghiacciato.
4. Nucleo di roccia e ghiaccio.


Gradatamente questa zona più calda e oscura condensa in un mantello liquido surriscaldato, dove le temperature raggiungono valori compresi fra i 2.000 K ed i 5.000 K. Il mantello possiede una massa di 10-15 masse terrestri ed è ricco di acqua, ammoniaca, metano ed altre sostanze, ed è in realtà un fluido caldo e molto denso. Questo fluido, che possiede un'elevata conducibilità elettrica, e talvolta è chiamato "oceano di acqua e ammoniaca". Alla profondità di 7.000 km, lo scenario potrebbe essere quello in cui il metano si decompone andando a formare cristalli di diamante che precipitano verso il centro.


Recenti studi ipotizzano la presenza di due stati ''esotici'' dell'acqua nel mantello sia di Nettuno ma anche di Urano, nella parte più esterna del mantello con la presenza di acqua ionica, un plasma super-denso dove gli atomi di ossigeno ed idrogeno si trovano mischiati in uno strano ''fango'' molto denso ad altissime pressioni e temperature, mentre nella parte più interna si ipotizza la presenza di acqua super-ionica dove gli atomi di ossigeno formano dei reticoli cubici e gli atomi di idrogeno si muovono liberamente tra di essi, questo stato, anche se inteso come fluido sarebbe durissimo come il ferro e di colore nero.
Il movimento degli atomi di idrogeno carichi tra i reticoli genera un campo elettrico che può spiegare la natura insolita dei campi magnetici dei due giganti ghiacciati.

( Grafico che indica gli stati fisici dell'acqua ad altissime pressioni e temperature ).

Il nucleo di Nettuno è composto da ferro, nichel e silicati, ed i modelli forniscono una massa di circa 1,2 masse terrestri. La pressione del nucleo si calcola di 7 Mbar, milioni di volte superiore a quella della superficie terrestre, e la temperatura potrebbe essere sui 5.400 K.


Atmosfera:
L'atmosfera di Nettuno, sebbene simile a quelle sia di Giove che di Saturno essendo composta principalmente da idrogeno ed elio, possiede anche maggiori proporzioni di "ghiacci", come acqua, ammoniaca e metano, assieme a tracce di idrocarburi e forse azoto.
In contrasto, l'interno del pianeta è composto essenzialmente da ghiacci e rocce come il suo simile Urano.
Le tracce di metano presenti negli strati più esterni dell'atmosfera contribuiscono a conferire al pianeta Nettuno il suo caratteristico colore azzurro intenso.
Nettuno possiede dei venti fortissimi, più di ogni altro pianeta nel Sistema Solare dotato di atmosfera. Sono state misurate raffiche a velocità superiori ai 2.100 km/h. All'epoca del sorvolo da parte della Voyager 2, nel 1989, l'emisfero sud del pianeta possedeva una Grande Macchia Scura , e la temperatura delle nubi più alte di Nettuno era di circa −218 °C, una delle più fredde del Sistema solare, a causa della grande distanza dal Sole, difatti riceve un millesimo dell'energia che arriva alla Terra.

( Immagini Hubble )

La nuova macchia scura del 2018:
Nel corso delle abituali osservazioni del tempo atmosferico sui pianeti più esterni del Sistema solare, il telescopio spaziale Hubble ha scoperto nell'autunno 2018, una nuova misteriosa macchia scura di tempesta su Nettuno , la nuova immagine, presa da Hubble mostra una tempesta in evoluzione: una macchia scura visibile nella parte centrale superiore.
Un nuovo studio condotto dall’Università di Berkeley (Usa), in via di pubblicazione su The Astronomical Journal, ha stimato che queste macchie scure appaiono periodicamente ogni 4-6 anni a diverse latitudini, scomparendo dopo circa due anni.
A destra della macchia scura compaiono “nuvole compagne” di un bianco brillante, che si formano quando il flusso dell’aria ambientale è perturbato e deviato verso l’alto, al di sopra del vortice scuro, causando il congelamento del metano in cristalli di ghiaccio. La nube lunga e sottile a sinistra della macchia scura è una formazione transitoria, che non fa parte del sistema temporalesco.
Non è chiaro come si formino queste tempeste ma, come nel caso della grande macchia rossa di Giove, i vortici scuri ruotano in senso anti-ciclonico e sembrano richiamare materiale da livelli più profondi nell’atmosfera di Nettuno.

Verso la fine dell'autunno del 2020 il telescopio spaziale Hubble ha ri-osservato il misterioso vortice su Nettuno allontanarsi improvvisamente dalla sua probabile morte in prossimità dell’equatore del gigantesco pianeta blu. La tempesta in questione, che è più ampia dell’Oceano Atlantico, è nata nell’emisfero settentrionale del pianeta ed è stata scoperta da Hubble nel settembre 2018. Un anno dopo, nuove osservazioni hanno mostrato come abbia iniziato a spostarsi in direzione sud, verso l’equatore, dove si prevedeva sarebbe svanita alla vista, dissolvendosi. Con grande sorpresa però, Hubble ha visto che il vortice ha cambiato direzione prima dello scorso agosto, dirigendosi nuovamente a nord. Sebbene negli ultimi 30 anni il telescopio spaziale abbia osservato simili macchie scure, questo comportamento atmosferico imprevedibile è stato qualcosa di assolutamente sorprendente.

Questa istantanea del telescopio spaziale Hubble rivela una tempesta scura (in alto, al centro) e l’emergere di una macchia scura più piccola nelle sue vicinanze (in alto, a destra) - Crediti: Nasa, Esa, Stsci, M.H. Wong, e L.A. Sromovsky e P.M. Fry ).

Altrettanto sorprendente è stato osservare che la tempesta non era sola. Nel gennaio di quest’anno, Hubble ha infatti individuato un’altra macchia scura più piccola che è apparsa temporaneamente vicino alla più grande. Potrebbe essersi trattato di una parte del gigantesco vortice che si è ”staccata” dalla principale, andando alla deriva per poi scomparire nelle successive osservazioni. Non era mai stato osservato un fenomeno simile, sebbene previsto dalle simulazioni.

La grande tempesta – che ha un diametro di 7400 chilometri – è la quarta macchia scura che Hubble ha osservato su Nettuno dal 1993. Altre due tempeste sono state scoperte dalla sonda Voyager 2 nel 1989 mentre volava vicino al lontano pianeta, ma erano già scomparse prima che Hubble potesse osservarle. Da allora, solo Hubble ha avuto la risoluzione e la sensibilità, nella luce visibile, per seguire queste caratteristiche sfuggenti, che sono apparse in sequenza e poi sono svanite, per una durata di circa due anni ciascuna.

I vortici scuri di Nettuno sono sistemi ad alta pressione che possono formarsi alle medie latitudini e migrare verso l’equatore. Iniziano rimanendo stabili a causa della forza di Coriolis, che fa ruotare in senso orario le tempeste dell’emisfero settentrionale, per via della rotazione del pianeta. Da notare che queste tempeste sono diverse dagli uragani sulla Terra, che ruotano in senso antiorario perché sono sistemi a bassa pressione. Tuttavia, quando una tempesta si sposta verso l’equatore, l’effetto Coriolis si indebolisce e la tempesta si dissolve. Questo comportamento è stato confermato da varie simulazioni al computer effettuate da diversi team ma, a differenza delle simulazioni, l’ultima tempesta gigante non è migrata nella “kill zone” equatoriale.

Le osservazioni di Hubble hanno anche rivelato che l’inversione del percorso del vortice si è verificata nello stesso momento in cui è apparsa una nuova macchia scura più piccola – di circa 6300 chilometri di diametro –  in prossimità del lato della macchia principale che si affaccia verso l’equatore, in una zona nella quale alcune simulazioni mostrano che si sarebbe verificato un disturbo. Tuttavia, i tempi di comparsa della macchia più piccola sono strani. «Quando ho visto per la prima volta la macchia più piccola, ho pensato che quella più grande fosse stata distrutta», riferisce Michael H. Wong dell’Università di Berkeley. «Non pensavo si stesse formando un altro vortice perché quello piccolo è più lontano, verso l’equatore, all’interno di questa regione di instabilità. Tuttavia non possiamo provare che i due vortici siano collegati. Rimane un completo mistero. È stato nel mese di gennaio che il vortice scuro ha interrotto il suo movimento e ha iniziato a muoversi di nuovo verso nord», aggiunge Wong. «Forse, spargere quel frammento è stato sufficiente a impedirgli di spostarsi verso l’equatore». I ricercatori stanno continuando ad analizzare ulteriori dati per capire se resti della macchia più piccola sono persistiti per il resto del 2020.

La macchia scura più grande è di circa 7400 chilometri di diametro, quella più piccola a destra è di circa 6300 chilometri ).

Un’altra caratteristica insolita della macchia scura è l’assenza di nubi luminose attorno a essa, che erano invece presenti nelle immagini di Hubble scattate quando il vortice è stato scoperto nel 2018. Apparentemente, le nubi sono scomparse quando il vortice ha interrotto il suo viaggio verso sud. Le nubi luminose si formano quando il flusso d’aria viene perturbato e deviato verso l’alto sopra il vortice, causando il probabile congelamento dei gas in cristalli di ghiaccio di metano. Secondo i ricercatori, la mancanza di nubi potrebbe rivelare informazioni su come si evolvono le macchie.

Altre osservazioni:

Immagini ad Infrarossi che mettono in evidenza le zone con temperature più elevate che corrispondono alle tempeste osservate nel visibile - vedi sopra ).

Magnetosfera:
Nettuno ha un campo magnetico fortemente inclinato verso l'asse di rotazione di 47° e decentrato di almeno 0,55 raggi (circa 13.500 km) rispetto al nucleo fisico del pianeta.

Questo campo potrebbe essere generato da convezioni del fluido interno in un involucro sferico sottile di liquido conduttore elettrico (probabilmente composto da ammoniaca, metano e acqua) che causano un'azione dinamo.
Il campo magnetico alla superficie equatoriale di Nettuno è stimato sui 1,42 μT, per un momento magnetico di 2,16 × 1017 Tm³.

Il campo magnetico di Nettuno possiede una geometria complessa che include componenti non-dipolari, incluso un forte momento quadripolo che potrebbe superare in forza pure quello dipolo.
Il punto dove la magnetosfera inizia a rallentare il vento solare, è alla distanza di 34,9 volte il raggio del pianeta, invece la magnetopausa, ossia il punto in cui la pressione della magnetosfera controbilancia il vento solare, va dalla distanza di 23 fino a 26,5 volte il raggio di Nettuno.
La coda della magnetosfera si estende all'esterno fino ad almeno 72 volte il raggio del pianeta e probabilmente molto più in là.

Anelli:
Nettuno ha un sistema di anelli planetari, uno dei più sottili del Sistema solare.
Gli anelli potrebbero consistere di particelle legate con silicati o materiali composti da carbonio, che conferisce loro un colore tendente al rossastro.

In aggiunta al sottile Anello Adams, a 63.000 km dal centro del pianeta, si trova l'Anello Leverrier, a 53.000 km, ed il suo più vasto e più debole Anello Galle, a 42.000 km.
Un'estensione più lontana di quest'ultimo anello è stata chiamata Lassell, ed è legata al suo bordo più esterno dall'Anello Arago, a 57.000 km.
l'anello principale, Adams, si rivelò costituito da cinque archi di anello principali, chiamati Courage, Liberté, Egalité 1, Egalité 2 e Fraternité.
Gli archi occupano una stretta banda longitudinale e sembrano piuttosto stabili, con minime variazioni dall'epoca della loro scoperta. L'esistenza di simili strutture non è stata ancora pienamente giustificata; normalmente ci si aspetterebbe una distribuzione uniforme di polveri e piccoli corpi ghiacciati sull'intera orbita attorno al pianeta. La stabilità potrebbe essere collegata alla risonanza orbitale tra l'anello e il suo satellite pastore Galatea.
___________________________________________________

LA MIGRAZIONE ORBITALE DI NETTUNO E' STATA A SALTI, E NON GRADUALMENTE UNIFORME

                                                                                                     

La complessa struttura orbitale della Cintura di Kuiper, incluse diverse categorie di oggetti all'interno e all'esterno delle risonanze con Nettuno, è emersa come il risultato della migrazione di Nettuno in un disco planetesimale esterno.

Un problema eccezionalmente complesso è che i modelli di migrazione graduali esistenti, prevedono invariabilmente popolazioni risonanti eccessivamente grandi, mentre le osservazioni mostrano che le orbite non risonanti sono in realtà molto più comuni (ad esempio, la popolazione della fascia di Kuiper è circa 2-4 volte più grande dei Plutini in risonanza 3:2 con Nettuno).
Questo problema può essere risolto se si presume che la migrazione di Nettuno fosse stata a ''salti'' cioè intermittente, come previsto in seguito agli incontri sparpagliati di Nettuno con enormi planetesimi.

La migrazione ''a salti'' agisce per destabilizzare i corpi risonanti con grandi ampiezze di librazione, una frazione dei quali finisce su orbite stabili e non risonanti.
Pertanto, il rapporto non risonante / risonante ottenuto con la migrazione ''a salti'' è maggiore, fino a circa 10 volte superiore per la gamma di parametri qui esaminati, rispetto a un modello con migrazione regolare. Inoltre, la migrazione intermittente, porta a una distribuzione più ristretta delle ampiezze nella risonanza 3:2.

Il miglior adattamento alle osservazioni si ottiene quando si presume che il disco planetesimale esterno inferiore a 30 au contenesse da 1000 a 4000 oggetti come Plutone.
Stimiamo che la massa combinata di oggetti di classe Plutone nel disco originale rappresentasse il 10% -40% della massa stimata del disco stimato in 20 masse terrestri. Questo vincolo può essere usato per comprendere meglio i processi di accrescimento nel sistema solare esterno.


Qui abbiamo ipotizzato che il disco esterno contenesse 1000 enormi planetesimi ciascuno con massa e abbiamo applicato il metodo descritto per imitare una migrazione ''a salti'' che deriverebbe dall'interazione di Nettuno con questi enormi oggetti. Il salto di Nettuno avviene in questa simulazione. Nei vari grafici i valori di Nettuno sono in BLU , mentre quelli di Urano sono in ROSSO , nel grafico B è rappresentata la variazione del rapporto dei periodi orbitali dei due giganti ghiacciati ).

Qui abbiamo sottolineato che tutti i precedenti modelli della formazione della Cintura di Kuiper soffrivano del problema della sovrappopolazione di risonanza, in cui le popolazioni risonanti erano sovrappopolate rispetto alle osservazioni. Abbiamo dimostrato che questo problema può essere risolto se la migrazione di Nettuno era intermittente a seguito di incontri ravvicinati con massicci planetesimi di classe Plutone.

In questo lavoro sono state adottate almeno due importanti approssimazioni:
(1) gli effetti gravitazionali dei planetesimi non sono stati esplicitamente inclusi nelle simulazioni (tranne per l'assunto implicito che i piccoli planetesimi guidano la migrazione di Nettuno e che i grandi planetesimi sono la fonte di un salto nell'evoluzione del semiasse maggiore di Nettuno) .
(2) gli effetti gravitazionali diretti dell'ipotetico quinto pianeta gigante non sono stati presi in considerazione nelle simulazioni tranne per il fatto che (facoltativamente) abbiamo attivato il salto di Nettuno in alcune simulazioni per vedere se il salto di Nettuno può risolvere il problema di sovrappopolazione di risonanza.
In questi casi nessuna di queste ipotesi può influenzare i principali risultati del nostro lavoro.

LINK (EN) : https://iopscience.iop.org/article/10.3847/0004-637X/825/2/94 
_______________________________________________________________

LA STORIA DI NETTUNO

Prima della scoperta:
La prima osservazione certa di Nettuno fu effettuata da Galileo Galilei, il 27 dicembre 1612, che disegnò la posizione del pianeta sulle proprie carte astronomiche scambiandolo per una stella fissa. Per una coincidenza fortuita, in quel periodo il moto apparente di Nettuno era eccezionalmente lento, perché proprio quel giorno aveva iniziato a percorrere il ramo retrogrado del suo moto apparente in cielo, e non poteva essere individuato mediante i primitivi strumenti di Galilei.
Qualche giorno dopo, il 4 gennaio 1613, si verificò addirittura l'occultazione di Nettuno da parte di Giove: se Galileo avesse continuato ancora per qualche giorno le sue osservazioni, avrebbe dunque osservato la prima occultazione dell'era telescopica.
La scoperta del pianeta dovette invece aspettare fino alla metà del XIX secolo.


Osservazione:
Nettuno è invisibile ad occhio nudo dalla Terra; la sua magnitudine apparente, sempre compresa fra la 7,7 e la 8,0, necessita almeno di un binocolo per permettere l'individuazione del pianeta.
Visto attraverso un grande telescopio, Nettuno appare come un piccolo disco bluastro dal diametro apparente di 2,2–2,4 secondi d'arco simile nell'aspetto ad Urano.

Scoperta:
Quando nel 1821 Alexis Bouvard pubblicò il primo studio dei parametri orbitali di Urano divenne chiaro agli astronomi che il moto del pianeta divergeva in maniera apprezzabile dalle previsioni teoriche; il fenomeno poteva essere spiegato solo teorizzando la presenza di un altro corpo di notevoli dimensioni nelle regioni più esterne del sistema solare.


La predizione matematica:
Indipendentemente fra loro il matematico inglese John Couch Adams (nel 1843) ed il francese Urbain Le Verrier (nel 1846) teorizzarono con buona approssimazione posizione e massa di questo presunto nuovo pianeta.

(in foto Urbain Le Verrier).

Sulla scia della scoperta si sviluppò un'accesa rivalità tra francesi ed inglesi sulla priorità della scoperta, da cui emerse infine il consenso internazionale che entrambi, Le Verrier ed Adams, ne meritassero il credito.
La questione è stata riaperta nel 1998, dopo la morte dell'astronomo Olin Eggen, dal ritrovamento di un fascicolo, chiamato "Neptune papers", di cui Eggen era in possesso.
Il fascicolo contiene documenti storici provenienti dall'Osservatorio reale di Greenwich che sembra siano stati rubati dallo stesso Eggen e nascosti per quasi tre decenni.
Dopo aver preso visione di tali documenti alcuni storici suggeriscono che Adams non meriti egual credito di Le Verrier. Dal 1966 Dennis Rawlins ha messo in discussione la credibilità della rivendicazione di co-scoperta di Adams. In un articolo del 1992 sul suo giornale, Dio, ha espresso l'opinione che la rivendicazione britannica sia un "furto".
 Nel 2003 Nicholas Kollerstrom dell'University College London ha detto: «Adams ha eseguito alcuni calcoli ma era piuttosto incerto su dove diceva che fosse Nettuno» .


La scoperta dove predetto:
Mentre le ricerche di Adams vennero trascurate dall'astronomo britannico George Airy, cui egli si era rivolto per sottolineare la necessità di ricercare il nuovo pianeta nella posizione trovata, quelle di Le Verrier vennero applicate da due astronomi dell'Osservatorio di Berlino, Johann Gottfried Galle (in foto a lato) e Heinrich d'Arrest: dopo meno di mezz'ora dall'inizio delle ricerche, aiutati dall'utilizzo di una carta stellare della regione in cui si sarebbe dovuto trovare Nettuno che avevano compilato le notti precedenti e con cui confrontarono le osservazioni, il 23 settembre 1846 i due individuarono il pianeta a meno di un grado dalla posizione prevista da Le Verrier (ed a dodici gradi dalla posizione prevista da Adams).
Nel giugno del 1846 Le Verrier aveva pubblicato una stima della posizione del pianeta simile ma più precisa rispetto a quanto calcolato da Adams. Ciò aveva spinto Airy a sollecitare il direttore dell'osservatorio di Cambridge, James Challis, a cercare il pianeta. Challis aveva quindi setacciato il cielo tra agosto e settembre, ma invano.
Osservato e riconosciuto per tale, la sera del 23 settembre 1846 da Johann Gottfried Galle con il telescopio dell'Osservatorio astronomico di Berlino, e Heinrich Louis d'Arrest, uno studente di astronomia che lo assisteva, Nettuno fu il primo pianeta ad essere stato trovato tramite calcoli matematici più che attraverso regolari osservazioni: cambiamenti insoliti nell'orbita di Urano indussero gli astronomi a credere che vi fosse, all'esterno, un pianeta sconosciuto che ne perturbava l'orbita. Il pianeta fu scoperto entro appena un grado dal punto previsto.
Dopo che Galle ebbe comunicato l'avvenuta scoperta, Challis realizzò di aver osservato il pianeta due volte in agosto, ma di non averlo identificato a causa della metodologia con cui aveva affrontato la ricerca.

Denominazione:
Poco dopo la scoperta ci si riferiva a Nettuno semplicemente come al "pianeta più esterno di Urano". Galle fu il primo a suggerire un nome e propose di nominarlo in onore del dio Giano. In Inghilterra Challis avanzò il nome Oceano.
Rivendicando il diritto a denominare il nuovo pianeta da lui scoperto, Le Verrier propose il nome Nettuno, affermando falsamente, tra l'altro, che il nome fosse stato già ufficialmente approvato dal Bureau des longitudes francese. In ottobre cercò di nominare il pianeta Le Verrier, dal proprio nome, e fu patriotticamente supportato dal direttore dell'Osservatorio di Parigi, François Arago. Sebbene questa proposta incontrò una dura opposizione al di fuori della Francia, gli almanacchi francesi reintrodussero rapidamente il nome Herschel per Urano, dal nome del suo scopritore William Herschel, e Leverrier per il nuovo pianeta.
Il 29 dicembre 1846 Friedrich von Struve si espresse pubblicamente in favore del nome Nettuno presso l'Accademia delle Scienze di San Pietroburgo ed in pochi anni Nettuno divenne il nome universalmente accettato. Nella mitologia romana, Nettuno è il dio del mare, identificato con il greco Poseidone. La richiesta di un nome mitologico sembrava in linea con la nomenclatura degli altri pianeti che prendono il proprio nome da divinità romane, ad eccezione soltanto della Terra e di Urano, che lo trae invece da una divinità della mitologia Greca.

Dopo la scoperta:
Già il 10 ottobre 1846, dopo diciassette giorni dalla scoperta di Nettuno, l'astronomo inglese William Lassell scoprì il suo principale satellite Tritone.

(in foto a lato William Lassell).

A causa della sua grande distanza le conoscenze su Nettuno rimasero frammentarie almeno fino alla metà del Novecento quando Gerard Kuiper scoprì la sua seconda luna, Nereide. Negli anni settanta e ottanta si accumularono indizi sulla probabile presenza di anelli o archi di anelli. Nel 1981 Harold Reitsema scoprì il suo terzo satellite Larissa.

Esplorazione:
L'unica sonda spaziale ad aver visitato Nettuno è stata la Voyager 2, nel 1989; con un sorvolo ravvicinato del pianeta la Voyager ha permesso di individuarne le principali formazioni atmosferiche, alcuni anelli e numerosi satelliti. Il 25 agosto 1989 la sonda ha sorvolato il polo nord di Nettuno ad una quota di 4 950 km per poi dirigersi verso Tritone, il satellite maggiore, raggiungendo una distanza minima di circa 40 000 km.
Dopo le ultime misure scientifiche condotte durante la fase di allontanamento dal gigante gassoso, il 2 ottobre 1989, tutti gli strumenti della sonda sono stati spenti, lasciando in funzione solamente lo spettrometro ultravioletto. Voyager 2 iniziava così una lunga marcia verso lo spazio interstellare, alla velocità di 470 milioni di chilometri all'anno; l'inclinazione della sua traiettoria rispetto all'eclittica è di circa 48°. Si ritiene che, al ritmo attuale, la Voyager 2 passerà a 4,3 anni luce dal sistema di Sirio tra 296.000 anni.
_____________________________________________
_____________________________________________

Satelliti

Nettuno ha 14 satelliti attualmente noti.
Il più grande, Tritone, è geologicamente attivo, con geyser di azoto liquido.
Tritone è l'unico grande satellite di tutto il sistema solare con orbita e direzione retrograda.
Di dimensioni interessanti pure Proteo 410 km e Nereide 340 km.
Le sei lune interne, scoperte analizzando le immagini riprese dal Voyager 2 durante la sua missione, presentano un'albedo tra 0,07 e 0,10. Mostrano tutte una forma ed una superficie piuttosto irregolare, si pensa che siano tutte il risultato della riaggregazione dei frammenti di altri satelliti catturati da Nettuno e distrutti dalle perturbazioni indotte da Tritone. Presentano tutte una rotazione sincrona e, tranne Proteo, hanno l'orbita instabile e in via di decadimento a causa della loro vicinanza a Nettuno; quando avranno superato il rispettivo limite di Roche o si disgregheranno formando un nuovo anello ciascuna, o "impatteranno" violentemente con Nettuno.
Il sistema di satelliti di Nettuno rivela una storia complessa e violenta. Molti miliardi di anni fa, Nettuno ha catturato la grande luna Tritone dalla Fascia di Kuiper, e la gravità del satellite acquisito ha perturbato tutto il sistema originario di lune del pianeta gigante. Successivi bombardamenti di comete hanno reso la storia ancora più complessa.

La distribuzione della massa delle lune di Nettuno è la più sbilanciata tra quelle dei satelliti degli altri giganti gassosi del Sistema Solare. Una luna, Tritone, contribuisce per quasi tutta la massa del sistema, mentre tutte le altre lune contribuiscono insieme solo per uno 0,3 per cento circa. Ciò potrebbe essere dovuto al fatto che Tritone è stato catturato successivamente alla formazione del sistema satellitare originario di Nettuno, gran parte del quale potrebbe essere stato distrutto durante il processo di cattura. Durante la fase della cattura, l’orbita fortemente eccentrica di Tritone gettò caos nelle orbite dei satelliti interni originari di Nettuno, facendoli collidere e riducendoli a un disco di macerie. Ciò significa che verosimilmente gli attuali satelliti interni di Nettuno non sono i corpi originari che si formarono insieme ad esso. Solo dopo che l’orbita di Tritone era diventata quasi circolare, alcune macerie poterono accrescere nuovamente nelle lune regolari di oggi. Questa considerevole perturbazione potrebbe essere forse la ragione per cui il sistema satellitare di Nettuno non segue il rapporto di 10.000:1 tra massa del pianeta madre e quella globale di tutte le sue lune verificato nei sistemi satellitari degli altri giganti gassosi. Il meccanismo di cattura di Tritone è stato oggetto di diverse teorie nel corso degli anni, una delle quali ipotizza che Tritone fu catturato in un incontro a tre corpi. In questo scenario, Tritone è il membro superstite di un oggetto binario della fascia di Kuiper scombussolato dal suo incontro con Nettuno.

SCHEDA RIASSUNTIVA SUL SISTEMA DI NETTUNO:
__________________________________________________________
__________________________________________________________

A cura di Andreotti Roberto.


Nessun commento:

Posta un commento